

Abundance of Juvenile Fall Chinook Salmon Emigrating from Lower Klamath Tributaries

Russell W. Perry
USGS, Western Fisheries Research Center

Fall Chinook Salmon Life Cycle Model Informational Workshop 13 October 2010

Goals of Analysis

- Annual abundance entering mainstem Klamath
 - Inputs to SALMOD
- Abundance as a function of
 - Parent stock (spawners)
 - Tributary
 - Environment (e.g., river flow)
 - Timing and size at emigration
 - Fit spawner-recruit models

Used Ricker model

- -Two parameters
 - α = productivity
 - survival with no density dependence
 - β = capacity
 - spawners producing maximum recruitment

- Why Ricker Model?
 - used by PFMC stock-recruit analysis (2005)
 - consistent with data Trinity River
 - Watershed area model

Data Requirements

- Spawner abundance from "megatable"
- Juvenile abundance from trap data
 - need weekly trap efficiency
 - need mark-recapture estimates
- Four tributaries fit requirements:

```
Bogus Cr. – 8 years
```

Trinity R. – 17 years

Ricker model with no covariates

(millions)

Ricker model with no covariates

Production varies among:

- years
- tributaries

Not enough contrast to estimate capacity

Effects of river flow on production

Flows during spawning period Mean Oct-Nov Discharge

Flows during incubation period Maximum Dec-Jan Discharge

Effects of river flow on production

Deviation from spawner-recruit curve [In(millions)]

Standardized discharge

Effects of river flow on production

Deviation from spawner-recruit curve [In(millions)]

1997 & 2006 Winter flood events

Standardized discharge

Variation in productivity (α) among Tribs. Model including flow covariates

Annual productivity $(\alpha, juveniles/spawner)$

Bogus Shasta Scott Trinity

Effects of Emigration Timing on Productivity

Annual productivity (α, juveniles/spawner)

Mean date of emigration

Size at Emigration

Mean length (mm)

Mean day of emigration

Why does productivity decline with emigration date?

Mixture of life stages

Egg to fry survival > Egg to parr survival

Earlier emigration

- = smaller mean size
- = more fry relative to parr
- = higher average survival
- = higher estimated productivity

Capacity Predicted from Watershed Area From Parken et al. (2006)

1/Beta = spawner level that maximizes recruitment

Figure 4. Relationships between watershed area and stock-recruitment reference points (Smsy and Srep) and association with the inverse of the beta parameter for ocean- and stream-type stocks. Regression parameters are in Table 4.

Ricker model at mean flows (solid) Capacity predicted from watershed area (dashed)

Juveniles (millions)

Summary

Productivity

- Tributary
- Timing and size at emigration
- Influenced by flow

Capacity

- Watershed area

Develop S-R curves for data poor watersheds Link juvenile production to environment

Acknowledgements

Many individuals from many agencies toiled over many years to collect the data shown here.

Such analyses are impossible without their hard work!

Questions

